Astronomers detect helium in the atmosphere of an exoplanet

Finding may help astronomers in the search for Earth-like planets

Astronomers using the NASA/European Space Agency (ESA) Hubble Telescope claim to have detected helium in the atmosphere of an exoplanet for the first time.

It is the first time the element has been detected in the atmosphere of a planet outside the Solar System, Hubble said, demonstrating the ability to use infrared spectra to study exoplanet extended atmospheres.

The international team of astronomers, led by Jessica Spake, a PhD student at the University of Exeter in the UK, used Hubble's Wide Field Camera 3 to discover helium in the atmosphere of the exoplanet called WASP-107b.

WASP-107b is one of the lowest density planets known: While the planet is about the same size as Jupiter, it has only 12 per cent of Jupiter's mass and is about 200 light-years from Earth, taking less than six days to orbit its host star.

We know there is helium in the Earth's upper atmosphere and this new technique may help us to detect atmospheres around Earth-sized exoplanets

"Helium is the second-most common element in the Universe after hydrogen. It is also one of the main constituents of the planets Jupiter and Saturn in our Solar System. However, up until now helium had not been detected on exoplanets - despite searches for it," Spake explained.

The team made the detection by analysing the infrared spectrum of the atmosphere of WASP-107b. Before now, previous detections of extended exoplanet atmospheres had been made by studying the spectrum at ultraviolet and optical wavelengths. This detection therefore demonstrates that exoplanet atmospheres can also be studied at longer wavelengths.

"The strong signal from helium we measured demonstrates a new technique to study upper layers of exoplanet atmospheres in a wider range of planets," added Spake.

"Current methods, which use ultraviolet light, are limited to the closest exoplanets. We know there is helium in the Earth's upper atmosphere and this new technique may help us to detect atmospheres around Earth-sized exoplanets, which is very difficult with current technology."

The amount of helium detected in the atmosphere of WASP-107b is so large that its upper atmosphere must extend tens of thousands of kilometres out into space. This also makes it the first time that an extended atmosphere has been discovered at infrared wavelengths.

Since its atmosphere is so extended, the planet is losing a significant amount of its atmospheric gases into space: between 0.1 and four per cent of its atmosphere's total mass every billion years.

As far back as the year 2000, it was predicted that helium would be one of the most readily-detectable gases on giant exoplanets, but until now, searches were unsuccessful.

Co-author of the study, David Sing, from the University of Exeter, said: "Our new method, along with future telescopes such as the NASA/ESA/CSA James Webb Space Telescope, will allow us to analyse atmospheres of exoplanets in far greater detail than ever before."